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Data worth and prediction uncertainty
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Abstract

BACKGROUND: Complex environmental models are frequently extrapolated to overcome data limitations in space and time, but
quantifying data worth to such models is rarely attempted. The authors determined which field observations most informed the
parameters of agricultural system models applied to field sites in Nebraska (NE) and Maryland (MD), and identified parameters
and observations that most influenced prediction uncertainty.

RESULTS: The standard error of regression of the calibrated models was about the same at both NE (0.59) and MD (0.58), and
overall reductions in prediction uncertainties of metolachlor and metolachlor ethane sulfonic acid concentrations were 98.0
and 98.6% respectively. Observation data groups reduced the prediction uncertainty by 55–90% at NE and by 28–96% at MD.
Soil hydraulic parameters were well informed by the observed data at both sites, but pesticide and macropore properties had
comparatively larger contributions after model calibration.

CONCLUSIONS: Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled
regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained
loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit
from improved characterization further to reduce model misfit and prediction uncertainty.
Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Studies by the US Geological Survey’s National Water Quality
Assessment (NAWQA) program have shown that the herbicide
metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-
1-methylethyl)acetamide] is among the top four most frequently
detected pesticides in groundwater. In a national study, meto-
lachlor was detected in 18% of groundwater samples in agricul-
tural areas, about the same rate as simazine and behind only
atrazine and deethylatrazine.1 The latter two compounds were
detected in 42 and 43%, respectively, of groundwater samples in
agricultural areas.

It is well known that pesticide occurrence in groundwater is
related to application rates, pesticide properties, soil conditions
and other factors. Less well known are the processes controlling
the transport and fate of degradates, although degradates are
frequently detected in the nation’s water resources. Nationwide,
one or more pesticides or degradates were detected 61% of
the time in shallow groundwater beneath agricultural areas.1

Additionally, NAWQA studies in eastern Iowa showed that nearly
85% of the total mass of herbicide in stream samples comprised
ten degradates (including metolachlor degradates), and that the
summed concentration of degradates was more than 10 times
higher than that of the parent compounds.

Few studies have attempted to simulate transport of both
applied pesticides and their degradates in multiple agricultural
settings of the United States. Here, use was made of inverse
modeling at field sites in Nebraska (NE) and Maryland (MD)
(Fig. 1) to calibrate the Root Zone Water Quality Model
(RZWQM)2 for predicting the transport and fate of metolachlor,
metolachlor ethane sulfonic acid {2-[(2-ethyl-6-methylphenyl)(2-
methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid} (ESA)
and metolachlor oxanilic acid {2-[(2-ethyl-6-methylphenyl)
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Figure 1. Site map showing unsaturated zone monitoring locations in Nebraska and Maryland

(2-methoxy-1-methylethyl)amino]-2-oxoacetic acid} (OXA). The
calibrations used pesticide data, nitrate data and, at MD, obser-
vations of soil moisture and soil water tension. Nitrate transport
was simulated by the RZWQM nitrogen module using parameters
obtained during previous inverse modeling at these same sites.3

Conservative transport of nitrate was expected on the basis of
previous results, so it was anticipated that nitrate would function
primarily as a tracer.

Inverse modeling was conducted in tandem with analyses of
data worth and prediction uncertainty. Among the many reasons
for modeling an environmental system, perhaps the main reason
is to overcome the limitations of field observations in space and
time.4 Models are tools by which to extrapolate from available
observations to gain a greater understanding of the system. Addi-
tionally, field observations are costly to obtain and may be scarce.
In the present study, the MD pesticide data comprised 7 months of
sampling and represented only the tail of the breakthrough curve
(BTC); soil hydraulic data were not sampled at NE; all data at both
sites were collected from working farms, which limited access to
fields at certain times.

To address concerns with model extrapolation and data ade-
quacy, in this field example, data worth and prediction uncertainty
are emphasized over traditional measures of model fit. The linear
equations used here do not require a model to employ parameters
that provide a good fit with field data, as they are applicable in a
generic sense. Linear sensitivity and uncertainty metrics can help
users to identify which parameters are well informed by the data,
which parameters are important to the predictions and which
observations are most instrumental in reducing the uncertainties
of predictions of interest. In their capacity to identify parameters
that contribute most to the uncertainties of key predictions, and
to quantify the effectiveness of different data acquisition strategies
in reducing these contributions, linear methods are more efficient

than global uncertainty analyses based, for example, on method-
ologies such as Markov-chain Monte Carlo.5 – 8 While the latter
method provides a full implementation of the Bayes equation,
quantification of posterior predictive uncertainty requires many
model runs. The number of these runs is greatly increased where
an analysis then attempts to quantify increases or reductions in
parameter and predictive uncertainty following reduction and
expansion of the number and nature of field observations. In
contrast, the numerical burden of linear uncertainty analysis and
ancillary linear analyses in which data worth and parameter con-
tributions to predictive uncertainty are assessed is very small.
A disadvantage of linear methods is their approximate nature.
However, this disadvantage must be seen in context, particularly
where alternative non-linear analysis may be impossible owing
to the very large number of model runs required. Added to this
is the fact that even non-linear methods require approximations
to be made, one such approximation being the adoption of a
covariance matrix to quantify measurement noise where, in fact,
most contributions to model-to-measurement misfit are the out-
comes of model-based structural noise whose covariance matrix
is unknown, and most probably singular.9

Linear methods have been compared with Markov-chain Monte
Carlo and found to produce similar results. Heuristic tests of ana-
lytical and numerical models in a prior study suggested that lin-
ear confidence intervals were useful approximations of uncer-
tainty even when conditions of Gaussian errors and small intrin-
sic non-linearity were significantly violated.10 In another study,
researchers analyzed the performance of linear methods when
used in conjunction with highly non-linear models.11 They showed
that, while the exact outcomes of linear analysis may indeed
depend on local parameter values, these outcomes are likely to be
qualitatively robust in that ordering relationships determined for
parameter contributions to predictive uncertainty and the worth
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Table 1. General characteristics of the two field sites

Site

Mean
precipitation
(cm year−1)

Irrigation rate
(cm year−1)

Depth to
watera(m) Soil type

Pesticide
application

Nebraska (N23): corn–soybean
(Dodge County)

72 20 21.6 Loam Metolachlor, 0.67 kg ha−1, 9 May
2002 and 2004

Maryland (M21): corn–soybean
(Kent County)

112 0 ≥6.50 Sandy loam Metolachlor, 1.36 kg ha−1, 20 April
2002

a At monitoring well during model simulation period; water level in Maryland decreased during the simulation period.

of different types of data are relatively invariant as parameter val-
ues are changed.

Calibration of agricultural system models is required under most
circumstances, and estimating the value of the available data for
this type of modeling is essential. Knowing the most important
parameters and which among the available observations inform
those parameters can help users to focus sampling and model-
ing resources to where they are most needed. However, quantify-
ing data worth to model calibration is rare in pesticide modeling
research. Accordingly, the objectives in the present field example
were: (1) to identify sensitive model parameters; (2) to determine
which observations most informed the parameters; (3) to identify
which parameters and observation groups most influenced pre-
diction uncertainty for unsampled portions of the BTCs.

2 METHODS
2.1 Field sites and data collection
The general characteristics of the field sites are shown in Table 1.
Previous investigators12 used RZWQM to predict metolachlor
transport and fate at the MD site. Aspects of the present study
that differed from the previous work included: (1) use of inverse
modeling for parameter estimation and sensitivity and uncer-
tainty analyses; (2) expansion of the pesticide modeling to an
additional site (NE); (3) at MD, inclusion of pesticide data from
two deeper lysimeters (1.3 and 2.4 m), whereas Bayless et al.12

manually calibrated RZWQM to data from the shallowest (0.5 m)
lysimeter; (4) estimation and evaluation of macropore parameters
at both sites. The previous modeling studies3,12 did not use the
RZWQM macropore component. Here, inverse modeling was used
to estimate macropore parameters in a consistent way at both
sites. Therefore, an additional aspect of the study was evaluation
of the influence of macropores at the two sites on the basis of the
inverse calibrated models.

Briefly, the sites comprised N23, an irrigated corn–soybean
rotation in the Maple Creek study basin in eastern NE, and M21, a
corn–soybean rotation in the Morgan Creek study basin in eastern
MD (Fig. 1). Both sites were described in previous studies,3,13,14 and
the sampling of pesticides, degradates, nitrate and bromide was
described by Capel et al.13 A brief description of site activities fol-
lows. The NE site received 0.67 kg ha−1 of metolachlor in 2002 and
2004, and 1.36 kg ha−1 of metolachlor was applied at MD in 2002
(Table 1). Pesticide and degradate samples were collected from
April 2004 to June 2005 in NE and from March to September 2004
in MD. Thus, at MD nearly 2 years had elapsed since metolachlor
was applied; however, lysimeter sampling at MD consistently
yielded detectable levels of ESA and OXA. NE had more complete
pesticide data than MD; lysimeter sampling spanned the BTCs,
although there is no metolachlor observation corresponding to

Table 2. Observation groups and weights used in model calibration
by PEST parameter estimation software

Observation Number Range
Weight used

with PEST

Nebraska
Metolachlor (mg L−1) 27 0.000013–0.0017 1500
Metolachlor ethane sulfonic

acid (mg L−1)
23 0.00013–0.019 190

Metolachlor oxanilic acid
(mg L−1)

23 0.00024–0.013 251

Nitrate (mg L−1) 43 4.5–58.8 0.03
Maryland
Metolachlor (mg L−1)a 14 NDb 10 000
Metolachlor ethane sulfonic

acid (mg L−1)
14 0.00024–0.0019 2500

Metolachlor oxanilic acid
(mg L−1)

14 0.00015–0.00082 7500

Nitrate (mg L−1) 34 3.0–50.5 0.03
Soil moisture content

(cm3 cm−3)
204 0.12–0.28 10

Soil water tension (cm) 204 −5800–0 0.001

a Metolachlor, the parent compound, was not detected in any of the
lysimeter samples; metolachlor reporting level= 0.00001 mg L−1.
b ND: not detected.

the predicted peak concentration. All 73 metolachlor and degra-
date concentrations at NE were above the reporting level (Table 2).
Lysimeters that had detectable concentrations of pesticides were
located at depths of 1.5 and 7.0 m at NE and 0.5, 1.3 and 2.4 m at
MD.13

Soil moisture and soil water tension are directly related to water
retention functions used by RZWQM to compute water fluxes, and
were extensively sampled at MD. Collection of such data spanned
15 months and represented a complete wetting and drying cycle,
including comparatively dry conditions in September 2004. Soil
moisture was measured at MD by water content reflectometry
probes located at depths of 0.5, 0.8, 1.1 and 1.4 m, and soil water
tension was measured by heat dissipation probes located at
depths of 0.4, 1.1, 2.3 and 4.1 m.13 Soil hydraulic data were not
collected at NE.

Soil samples from Iowa State University’s Northeast Research
Center near Nashua, Iowa, were analyzed to determine the parti-
tion coefficients (Kd) of metolachlor and OXA as part of a follow-up
modeling study for a site in Iowa. Because soil samples were no
longer available at NE and MD, the Iowa Kd values were compared
with those at NE and MD derived through model calibration.
Measured organic matter content at NE and MD was considered
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when making the Kd comparisons. The eight soil samples at Iowa
were collected from two 0.4 ha field plots comprising moderately
well to poorly drained loam and silty clay–loam soils.15 Kd was
measured for each soil sample using methods described in the
supporting information.

2.2 Unsaturated zone fate and transport modeling
Version 2.4 of RZWQM was used to simulate pesticide transport
and fate and water fluxes at the two field sites. RZWQM is a
one-dimensional agricultural system model that simulates the
effects of agricultural management practices on soils, crop growth
and water quality.2,16 RZWQM simulates water and pesticide move-
ment in the soil matrix, overland flow and macropore flow. The
latter two pathways have the potential to transfer pesticides more
quickly compared with soil matrix flow. RZWQM simulates soil infil-
tration of water on the basis of the Green–Ampt equation, and
water is redistributed within the soil according to the Richards’
equation.17 When rainfall and/or irrigation exceed the infiltration
rate of the soil, a portion of chemicals in the top 2 cm of soil (‘mix-
ing zone’) can be transferred to overland flow where they can
either enter macropores or become edge-of-field run-off, depend-
ing on macropore flow capacity. Solution moving through macro-
pores interacts with soil walls, and a portion of the water and
chemicals infiltrates outwards into the soil matrix. The interaction
with macropore walls is simulated with a parameter describing
effective soil thickness (est), which is the thickness of a macro-
pore wall available for interaction with water and chemicals.18

Radial flow outwards from macropores into the soil matrix can be
impeded by compaction of the macropore walls, and this effect is
simulated using the sorptivity factor control for lateral infiltration
(lsf ). Most percolate comes from a small number of macropores,
and this is addressed through the concept of ‘active macroporos-
ity’. The active macroporosity is the fraction of total macroporosity
that transmits water, and is a function of the number of macrop-
ores per unit area that effectively transmit water.19 Active macro-
porosity was calculated as one-half of the percolate-producing
macroporosity according to

pmac = 0.5 × nmac × 𝜋 × rad2 (1)

where pmac is active macroporosity, nmac is the number of
percolate-producing macropores per soil area (cm−2) and rad is
the average radius of macropores (cm).18 The nmac parameter
was adjusted during inverse modeling, and pmac was calculated
externally by a post-processor.

RZWQM simulates pesticide sorption, desorption and degrada-
tion, and the latter is simulated as a first-order process. Sorption
is characterized by Kd, which is normalized to soil organic carbon
according to Koc = Kd/f oc, where Koc is the soil organic carbon sorp-
tion coefficient and f oc is the weight fraction of organic carbon
in the soil. In the present study, RZWQM was parameterized for
simultaneous degradation of metolachlor to the degradates ESA
and OXA. Pesticide half-life is influenced by soil water content and
temperature, and these effects are simulated in RZWQM from the
predicted field temperature and water content of the soil, refer-
ence soil temperature and soil water content, activation energy
and other parameters.19

Model set-up for nitrate has been previously described,3 but
here the MD model was extended nearly to the average water
table depth (6.54 m) to account for macropore flow of water and
pesticides to depth. Measured depth to water decreased during
the period of data collection at MD, so a unit gradient boundary

condition was used rather than constant head. Initial tests estab-
lished that both boundary conditions gave identical results at the
depth of data collection (0.5–4.1 m). The model simulation peri-
ods were 2002–2004 at MD and 2002–2005 at NE. The RZWQM
simulation iteration control was used to run the model a second
time after reading state values from the end of the first simulation.
This doubled the simulation periods, helped to stabilize hydraulic
properties and nutrient pools and allowed for residual pesticide
concentrations in soil and water. Simulation layers associated with
each model are shown in supporting information Table S1.

PEST20 was used to estimate parameters pertaining to the soil
water, pesticide and macropore components of RZWQM. PEST
uses a combination of singular value decomposition supported
by Tikhonov regularization as a basis for parameter estimation.
Although ‘gradient methods’ implemented by PEST have the
potential to become trapped in local objective function minima,
here several sets of starting parameters were used, and these
converged on similar parameter values. PEST attempts model cal-
ibration through near-minimization of a weighted least-squares
objective function, given by the equation

𝚽 (b) =
m1∑
i=1

𝜔2
sm,i

(
Osm,i − Psm,i

)2 +
m2∑
i=1

𝜔2
t,i

(
Ot,i − Pt,i

)2

+
m3∑
i=1

𝜔2
n,i

(
On,i − Pn,i

)2 +
m4∑
i=1

𝜔2
mt,i

(
Omt,i − Pmt,i

)2

+
m5∑
i=1

𝜔2
e,i

(
Oe,i − Pe,i

)2 +
m6∑
i=1

𝜔2
o,i

(
Oo,i − Po,i

)2 +𝚽M (2)

where 𝚽(b) is the measurement objective function based on
parameter set (b), P is the predicted value, O is the observed
value, 𝜔 is the observation weight, subscript i denotes the ith
observation, subscript ‘sm’ denotes soil moisture, subscript ‘t’
denotes soil water tension, subscript ‘n’ denotes nitrate, subscript
‘mt’ denotes metolachlor, subscript ‘e’ denotes ESA, subscript ‘o’
denotes OXA, m1, m2, … , m6 are the numbers of observations
associated with each of the preceding observation groups and

𝚽M =
∑

𝜔rj

(
pej − pj

)

where estimated parameter values (pj) are penalized as part
of Tikhonov regularization in proportion to their departures
from expert-knowledge-based values (pej), and the regular-
ization weights 𝜔rj are adjusted by PEST in accordance with
the user’s desire for the measurement objective function to
attain a certain level, discussed below. All observation groups
were used as part of a multi-objective optimization approach,
which can mitigate parameter equifinality wherein multiple
sets of parameters lead to acceptable model results.21 Addition-
ally, prior researchers found that multi-objective optimization
reduced model uncertainty compared with extending the
period of data collection or sampling frequency of a single
observation group.22 At NE, equation (2) excluded the first two
terms because soil moisture and water tension data were not
collected.

Tikhonov regularization commonly results in a value of 𝚽(b)
that is somewhat greater than the lowest obtained from an initial,
non-regularized optimization (see below). The former is set by the
PEST variables PHIMLIM, which controls the strength of regulariza-
tion, and PHIMACCEPT, which helps account for deviations from
linearity that can arise from linear approximation of the equations
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used to derive the parameter estimates.23 Less regularization
improves the model fit but can result in parameters reaching
their bounds, whereas greater regularization sacrifices model fit
to some degree but can yield more realistic parameter estimates.
After regularization, 𝚽(b) typically is commensurate with levels
of so-called ‘structural noise’ which is an outcome of a model’s
inability to simulate the totality of all processes that are operative
at a particular site. This is often heuristically determined from the
level of fit at which parameter values indicate that parameters
are playing compensatory roles in order to accommodate model
defects.

Observation groups, related statistics and corresponding
weights are shown in Table 2. The weighting strategy was twofold:
(1) to compensate for extreme differences in units (e.g. 10−4 mg L−1

pesticide concentrations versus 104 cm soil water tensions); (2)
to ensure that no single observation group dominated or was
dominated by any other group in 𝚽(b), thereby ensuring that
the information content of each observation group was allowed
access to the parameter estimation process, and could thereby
influence the estimated values of parameters. Regarding the
latter, the weights were initially set as the inverse of the variance
of the observation error, as recommended by prior researchers.7

The weights were then adjusted to emphasize pesticide and
degradate concentrations relative to the other observation
groups. This step was intended to account for epistemic uncer-
tainty, which includes measurement error, model error and
structural/conceptual uncertainty.24

Parameter estimation was conducted in two phases. Firstly, PEST
was used to lower the measurement objective function to as low
a level as could be achieved with the calibration data (𝚽M= 0).
During calibration, truncated singular value decomposition was
used to estimate linear combinations of process-model parame-
ters, which mitigated problems with parameter correlation and
insensitivity. The second phase utilized regularization, whereby
the target objective function was set 5–10% higher than the
minimum and the process was repeated. This procedure ensured
that the fit between model outputs and field data was near opti-
mal while providing more realistic values of estimated param-
eters. See the PEST documentation for further implementation
details.20,25

Following parameter estimation, predictive uncertainty analysis
was performed using linear methods. This step required calcula-
tion of a sensitivity matrix on the basis of the estimated param-
eters; this matrix lists the sensitivity of every model output used
in the calibration process to every parameter. Linear analysis also
required that a prior parameter covariance matrix be provided. As
the covariance matrix associated with the prior probability distri-
bution of parameters, this can be viewed as an expression of expert
knowledge (or a lack thereof, as it pertains to parameter values at
any particular study site). The inherent parameter variability is used
in an informal Bayesian approach which is described in more detail
below.

2.3 Model fit, sensitivity and prediction uncertainty
The index of agreement (IA) was used to describe the degree of fit
of the calibrated models, defined as26

IA = 1 −

m∑
i=1

(
Oi − Pi

)2

m∑
i=1

(|||Pi − O||| + |||Oi − O|||
)2

(3)

where O is the mean of the observations, and m is the number
of observations. The index of agreement ranges from 0 to 1, with
higher values indicating better fit.26

PEST’s SUPOBSPAR1 utility25 was used to track the flow of infor-
mation from combinations of observations to combinations of
parameters obtained by undertaking singular value decompo-
sition on the weighted sensitivity matrix. SUPOBSPAR1 defines
so-called ‘superobservations’ (linear combinations or eigenvec-
tors of individual observations) that directly and entirely inform
so-called ‘superparameters’ (eigenvectors of process-model
parameters). In the parameter estimation process, each superpa-
rameter (SP) can be shown to be calculable from its corresponding
superobservation (SO) through direct multiplication of the latter
by the singular value with which both are associated. Individual
observations with activities of more than about 0.1 on the SO
eigenvectors were considered most to inform the corresponding
SPs. Squaring and summing the activities of the process-model
parameters for eight of the SPs estimated here yielded the param-
eter identifiability statistic (ID),6 which indicates the amount
of information provided by the observed data for estimating a
parameter (i.e. parameter sensitivity).

PEST’s GENLINPRED utility was used to perform predictive uncer-
tainty analysis based on a linearized Bayesian approach that com-
putes predictive uncertainty variance as24,25

𝜎2
s = zTCPPz − zTCPPXT

[
XCPPXT + Cϵϵ

]-1
XCPPz (4)

where 𝜎2
s is the posterior uncertainty of the single prediction, z

is a vector of prediction sensitivities, X is the sensitivity (some-
times called ‘Jacobian’) matrix comprising m rows and n columns,
where m is the number of observations with non-zero weights
and n is the number of parameters, Cpp is the covariance matrix
of the prior parameter variability with variances on the diago-
nal and covariances on the off-diagonal and Cϵϵ is the covariance
matrix of simulation error and measurement error (which, as is
usually done, are lumped together in a single matrix that reflects
model-to-observation misfit). The first term in equation (4) repre-
sents precalibration (a priori) predictive uncertainty, and the sec-
ond term represents the reduction in prior uncertainty incurred
by the conditioning effect of the calibration dataset.24 Cpp was
based on statistical distributions of parameters to the extent pos-
sible. For example, standard deviations of soil hydraulic proper-
ties were included in the parameter uncertainty file used by GEN-
LINPRED. Prior researchers compiled generic distributions of soil
hydraulic parameters and compared them with parameter values
from other sources.27 The most significant differences occurred for
a curve-fitting parameter related to the pore size distribution in the
Brooks–Corey water retention function, but that parameter was
not directly estimated in the present study.

GENLINPRED accesses several PEST utilities, which are briefly
described here. PREDUNC125,28 was used to compute the precal-
ibration uncertainty of the predictions, and to derive postcalibra-
tion prediction intervals for deep seepage to evaluate the water
component of RZWQM. Parameter contributions to the uncer-
tainty of predicted maximum pesticide or degradate concentra-
tion were evaluated using PREDUNC4,24,25,28 which computes pre-
and postcalibration components of 𝜎2

s before and after perfect
knowledge of a parameter is assumed (this being indicated math-
ematically by setting pertinent rows/columns of Cpp to zero). The
resulting reductions in the pre- and postcalibration components
of prediction uncertainty represent the contribution of the param-
eter to the prediction uncertainty. Stated loosely, the greater the
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reduction in predictive uncertainty, the greater is the importance
for that parameter to the prediction, denoted as ‘parameter impor-
tance’ (PI) herein.

PREDUNC524,25,28 was used to compute data worth for groups
of observations (metolachlor, ESA, OXA, etc.). PREDUNC5 pro-
vides two metrics: (1) the decrease in precalibration predictive
uncertainty variance [first term in equation (4)] that is accrued if
the observation or observation group comprises the entirety of
the calibration dataset; (2) the increase in predictive uncertainty
variance [both terms in equation (4)] incurred through omission
of the observation group from the calibration dataset (simulated
by adding rows to and removing rows from the X matrix). The
first quantity is a measure of the information content of the
observation group with respect to each prediction; the second is
a measure of the uniqueness of that information. In the discussion
that follows, all changes to predictive uncertainty variance were
normalized through division by the total precalibration predictive
uncertainty variance and expressed as percentages to facilitate
comparison between locations and between predictions.

As stated above, equation (4) was employed for computation
of predictive uncertainty variance, and for changes in predic-
tive uncertainty variance following the assumption of perfect
knowledge of parameters and by addition/removal of selected
observations to/from the calibration dataset. The Cpp matrix,
as discussed above, is a reflection of expert knowledge. This
was supplied as a diagonal matrix whose diagonal terms are
the squares of prior parameter uncertainty standard deviations.
C𝜖𝜖 is a diagonal matrix comprising values calculated from the
components of the objective function acquired through the
model calibration. Elements of this matrix were set in such
a way that the components of 𝚽(b) corresponding to each
observation group equaled the number of observations com-
prising the group. In this way, both the measurement and model
errors that give rise to model-to-observation misfit were in har-
mony with assessments of misfit made through the calibration
process.

3 RESULTS AND DISCUSSION
3.1 Model fit to observed data
Inverse modeling calibration resulted in 289 RZWQM simulations
at NE and 447 simulations at MD. The standard error of regression
[see supporting information equation (S1)] of the calibrated mod-
els was about the same at NE (0.59) and MD (0.58), indicating that
both models provided about the same overall fit to the data. The
hydrology component of the MD model fitted the observed soil
hydraulic data well: IA= 0.90 for soil moisture data and IA= 0.95
for soil water tension data.

Predicted concentrations of metolachlor and degradates fitted
the observed data reasonably well at NE (Fig. 2): IA was 0.68 for
metolachlor, 0.81 for ESA and 0.85 for OXA. The period of data
collection at NE spanned the breakthrough and recession of
metolachlor and degradates such that these compounds varied
in a systematic way over time (Fig. 2). RZWQM predicted fairly
rapid appearance of metolachlor and degradates in late May
2004, followed by declining concentrations the following summer,
although there were gaps in the measured data in late May–June
2004 (corresponding to predicted peak concentrations) and from
October 2004 to April 2005 (Fig. 2). The rise and fall of measured
and predicted values apparently benefitted the IA statistic, which
is a correlative measure.
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Figure 2. Predicted versus observed concentrations of metolachlor, meto-
lachlor ethane sulfonic acid (ESA) and metolachlor oxanilic acid (OXA) over
time in Nebraska. Water inputs from precipitation and irrigation are shown
in the top plot.

Pesticide data were more sparse at MD than at NE. Lysimeter
samples were procured 2 years after metolachlor was applied on
20 April 2002, and the observed data (March–September 2004)
characterized only the tail of the BTC (Fig. 3). Additionally, all 14
metolachlor observations at MD were less than the reporting level
of 10−5 mg L−1 in 2004 (Table 2). The metolachlor non-detects
were still useful in model calibration, however, and corresponding
metolachlor predictions were all below 10−6 mg L−1, indicating
reasonable agreement (data not shown). IA values of ESA (0.42)
and OXA (0.30) at MD were substantially lower than at NE, indicat-
ing comparatively poor fit to the degradate data. In contrast to NE,
measured and predicted degradate values at MD were relatively
constant over time (Fig. 3).

Figure 4 shows that the poor fit of the model at MD was
confined to the shallow lysimeter (0.5 m). Measured and predicted
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Figure 3. Predicted versus observed concentrations of metolachlor ethane
sulfonic acid (ESA) and metolachlor oxanilic acid (OXA) over time in Mary-
land. Water input from precipitation is shown in the top plot.

concentrations corresponding to the deeper lysimeters were well
within a factor of 5 for both ESA and OXA. In a paper on simulated
atrazine transport in drainage, predicted concentrations in the
soil profile within a factor of 10 of measured concentrations were
considered to be acceptable, and predicted concentrations in
drainage within a factor of 5 of measured were considered very
good.29 In the present study, 71% of predicted ESA and OXA values
were within a factor of 5 of measured values, and 79% of predicted
ESA values and 86% of predicted OXA values were within a factor
of 10.

Although RZWQM underestimated degradate concentrations at
0.5 m at MD, the predicted depletion of degradates at shallow
depth is reasonable because of the elapsed time since metolachlor
application. The observed persistence of degradates at this depth
may be due to processes not simulated here. For example, we did
not estimate RZWQM parameters associated with sorption kinet-
ics. However, kinetic and equilibrium-only approaches produced
similar results in a previous pesticide modeling study.29

Prior researchers discussed potential sequestration of atrazine
on surficial woody debris in fine-grain material at MD site M22,14

which is adjacent to the modeling site in the present study.
Solids concentrations of both atrazine and deethylatrazine (DEA)
were high at shallow depth (<2 m) 2 years after the last atrazine
application in 2002, while corresponding water samples con-
tained DEA but not atrazine. Similarly, sequestration of meto-
lachlor on woody solids might have provided a source of degra-
date to soil water at shallow depth long after this compound was
applied.
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Figure 4. Predicted versus observed concentrations of metolachlor ethane
sulfonic acid (ESA) and metolachlor oxanilic acid (OXA) in Maryland in
relation to lines representing predicted concentrations within a factor of
5 of observed concentrations.

3.2 Model parameter estimates
Parameter estimates and ID values obtained by inverse model-
ing are shown in Table 3. Estimates of soil hydraulic parameters
generally were consistent with previous models that emphasized
N mass balances at these sites.3 Here, pesticide and degradate
parameters are emphasized, in keeping with the present objec-
tives. PEST-calibrated values of Koc and half-life were mostly con-
sistent with ranges reported in the literature, although differences
arose in cases where f oc and temperature were different from field
conditions at NE and MD. Pesticide properties are discussed in
more detail in the supporting information. However, results should
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Table 3. Root Zone Water Quality Model parameters obtained by inverse modeling in Nebraska and Maryland and identifiability values based on
all of the observations [L1 to L5, modeled soil layers comprising lm (loam), snd (sand), stlm (silt loam), sdlm (sandy loam); ID, identifiability; ESA,
metolachlor ethane sulfonic acid; OXA, metolachlor oxanilic acid]

Nebraska Maryland

Name Estimate ID Estimate ID

Hydraulic properties
Saturated hydraulic conductivity (cm hr−1) for each modeled soil layer

L1aNE sdlm; MD: lm ks1 5.90 0.002 0.11 0.117
L2aNE sdlm; MD: lm ks2 19.39 0.008 1.08 0.087
L3aNE stlm; MD: sdlm ks3 5.29 0.002 5.62 0.209
L4aNE snd; MD: lm ks4 16.71 0.009 1.91 0.064
L5aNE snd; MD: sdlm ks5 13.83 0.004 5.27 0.115

Water content at field capacity (cm3 cm−3) for each modeled soil layer
L1a(all soil layers same as above) wfc1 0.12 0.687 0.25 0.268
L2a wfc2 0.14 0.693 0.16 0.505
L3a wfc3 0.28 0.116 0.11 0.627
L4a wfc4 0.13 0.022 0.21 0.004
L5a wfc5 0.22 0.004 0.15 0.007

Bulk density (g cm−3) for each modeled soil layer
L1a(all soil layers same as above) bd1 1.47 2.584 1.70 2.279
L2a bd2 1.66 2.640 1.69 1.789
L3a bd3 1.55 0.005 1.70 1.073
L4a bd4 1.70 0.246 1.21 0.114
L5a bd5 1.70 0.011 1.20 0.179

Pesticide properties
Sorption coefficient (cm3 g−1),

metolachlor
koc1 187.10 0.040 375.00 0.055

Sorption coefficient (cm3 g−1),
ESA

koc2 74.93 0.093 24.92 6.86E-05

Sorption coefficient (cm3 g−1),
OXA

koc3 13.59 0.001 27.01 2.46E-05

Formation %, ESA for1 49.97 0.060 18.55 8.56E-06
Formation %, OXA for2 70.00 0.044 43.45 2.20E-05
Soil surface biotic half-life (days),

metolachlor
tsb 5.00 0.012 23.66 3.88E-05

Soil subsurface aerobic half-life
(days), metolachlor

tsba 7.56 0.071 17.14 0.084

Soil subsurface aerobic half-life
(days), ESA

td1a 166.08 0.314 115.78 2.61E-05

Soil subsurface aerobic half-life
(days), OXA

td2a 200.00 0.007 106.76 5.93E-05

Macropore parameters
Crust hydraulic conductivity

(cm h−1)
chc 0.01 0.025 0.050 6.73E-53

Fraction microporosity fmic 0.52 0.003 0.50 0.040
Effective soil thickness (cm) est 0.097 0.088 0.71 0.180
Sorptivity factor control for

lateral infiltration (cm)
lsf 0.0016 0.026 0.048 0.035

Number of macropores per cm2 nmac 0.033 0.128 0.030 0.018
Average macropore radius (cm) rad 0.063 0.053 0.049 0.152

a Depth intervals (cm) of the five model layers at each site were: Nebraska 0–10, 10–244, 244–366, 366–732, 732–1000; Maryland 0–10, 10–100,
100–250, 250–400, 400–648.

be interpreted with caution because the BTCs were undersampled
at both sites.

The calibrated values of Koc and half-life for metolachlor,
ESA and OXA differed between NE and MD (Table 3), but the
overall relations were consistent. Firstly, Koc was substantially
lower for both degradates (14–75 cm3 g−1) than for metolachlor
(187–375 cm3 g−1) at both sites, indicating greater water solubility
and increased mobility of the degradates relative to the parent

compound. Secondly, half-lives were substantially greater for the
two degradates (107–200 days) than for metolachlor (5–24 days)
at both sites, indicating greater persistence. This is consistent with
patterns of occurrence of the three compounds in the subsurface;
several studies have reported substantially higher frequencies
of detection for the two degradates than for metolachlor in
groundwater,30 – 32 as well as in surface water under base flow
conditions.33 Thirdly, differences in calibrated Koc values at NE
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Figure 5. Parameter identifiability statistics obtained by singular value decomposition in Nebraska and Maryland. Parameters are defined in Table 3.

and MD may be attributed to differences in the organic carbon
content of the soil (f oc). Based on field observations of organic
matter (supporting information Table S2), the weighted average
f oc was estimated to be 0.02 at NE and 0.009 at MD. Partition
coefficients (Kd in supporting information Table S3) computed
from calibrated Koc values and the f oc estimates were similar at
NE and MD for metolachlor (4.1 and 3.2 cm3 g−1 respectively) and
OXA (0.3 and 0.2 cm3 g−1 respectively), but less so for ESA (1.6 and
0.2 cm3 g−1 respectively).

Average measured Kd values of metolachlor and OXA for soil
samples obtained from the Nashua, Iowa, field site were 3.8 and
0.9 cm3 g−1 respectively (supporting information Table S3). These

values were similar to those computed above for the two com-
pounds, which supports the calibrated Koc values upon which the
Kd computations were based. Measured Kd values for ESA were
unavailable.

3.3 Model sensitivity and prediction uncertainty
3.3.1 Sensitivity of model parameters
Identifiability (ID) was used to indicate the extent to which
parameters were informed by the observed data, and parameter
importance (PI) to measure the contributions of parameters to
the uncertainty of maximum predicted metolachlor or degradate
concentration. Whereas ID reflects all observations at all sampling
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Table 4. The top ten observations informing superparameters (SPs) estimated by singular value decomposition, where the observations have been
sorted by strength of activity on the SPs (activ., activity; obs., observation)

Nebraskaa Marylandb

SP3: soil
hydraulic

SP7: soil hydraulic+
pesticide property

SP8: soil hydraulic+
macropore

SP1: soil
hydraulic

SP3: soil hydraulic
+macropore

SP5: soil hydraulic
+pesticide property

Obs. Activ. Obs. Activ. Obs. Activ. Obs. Activ. Obs. Activ. Obs. Activ.

mta8 0.451 ea10 0.257 mta7 0.408 ta46 0.530 mc2 0.569 md15 0.374
mta9 0.305 na17 0.226 mta6 0.303 ta47 0.479 md15 0.524 mc17 0.346
mta10 0.251 na7 0.211 mta3 0.274 ta45 0.388 md20 0.346 mc2 0.324
na4 0.215 ea12 0.207 mta4 0.238 md15 0.374 mc17 0.306 mta1 0.319
na5 0.210 na14 0.193 mta5 0.225 mc17 0.291 mta1 0.165 md12 0.270
na3 0.194 na6 0.179 mta2 0.200 mb37 0.131 mb2 0.155 mb11 0.258
na2 0.190 na13 0.170 mtb8 0.164 mb45 0.093 ta46 0.140 md20 0.249
na6 0.190 oa6 0.168 mtb6 0.164 md20 0.084 ta45 0.123 mta2 0.153
mta7 0.172 oa5 0.156 oa12 0.161 tb46 0.079 ta47 0.109 ta45 0.146
mtb7 0.171 oa7 0.152 oa11 0.151 mb2 0.060 mc20 0.092 md36 0.141

a Nebraska: e=metolachlor ethane sulfonic acid, mt=metolachlor, n=nitrate, o=metolachlor oxanilic acid; lysimeter depth: a= 1.5 m, b= 7.0 m;
number is nth observation at sampling point.
b Maryland: m=moisture; n=nitrate, mt=metolachlor; t= tension; moisture probe depth: a= 0.5 m, b= 0.8 m, c= 1.1 m, d= 1.4 m; tension probe
depth: a= 0.4 m, b= 1.1 m, c= 2.3 m, d= 4.1 m; lysimeter depth: a= 0.5 m; number is nth observation at sampling point.

depths, PI corresponds to a single prediction at the shallowest
lysimeter at each field site (1.5 m at NE and 0.5 m at MD).

Soil hydraulic parameters were better informed by the observed
data than pesticide properties or macropore parameters, based
on ID. Bulk density parameters (bd1 and bd2) were most sensitive
at both NE and MD, and bulk density and water content at field
capacity (wfc) composed the four most sensitive parameters at
NE and the six most sensitive at MD (Fig. 5). Soil hydraulic data
were not collected at NE, but the model fit to nitrate data at NE
(IA= 0.52) was about the same as at MD (IA= 0.49). 𝛿15N[NO3

−] and
𝛿18O[NO3

−] data were similar for shallow and deep lysimeters at
a previously investigated site (N22)34 that is adjacent to N23. The
fact that the isotope data were similar at the two depths indicated
that denitrification, which typically causes fractionation of stable
isotopes, was not occurring and that nitrate was conservatively
transported through the unsaturated zone. Most soil layers at NE
had a moderate to high sand content (0.40–0.94) (supporting
information Table S1), which is not conducive to denitrification.
Nitrate evidently functioned as a conservative tracer at these sites
and would be expected to move at the same rate as the soil water.

The sensitivity results reflected the observation data worth
determined by SUPOBSPAR1. Soil hydraulic parameters, in partic-
ular bd and wfc, were most active on the SPs at both sites, whereas
pesticide properties and macropore parameters had less overall
influence. The SPs were designated on the basis of these activities
as ‘soil hydraulic’ (soilhyd), ‘soil hydraulic+pesticide properties’
(sh_pp) or ‘soil hydraulic+macropores’ (sh_mp), as appropriate,
and the colors of the bars in Fig. 5 indicate SP composition. For
example, the blue colors (soilhyd) in Fig. 5 dominate the highly sen-
sitive soil hydraulic parameters, whereas the light-orange (sh_pp)
and light-red (sh_mp) shades generally correspond to less sensi-
tive parameters.

3.3.2 Observation data worth to singular value decomposition
parameters
Activities of SO elements revealed which individual observations
most informed the corresponding superparameters. The top ten

most active observations are shown in sorted order in Table 4 for
selected SPs to illustrate the flow of information from SOs to SPs. At
NE, SP3 represented soil hydraulic processes, and the top-ranked
observations were predominantly metolachlor and nitrate from
the 1.5 m lysimeter. Nitrate was also active on SP7, along with ESA
and OXA observations at 1.5 m depth. The increased activity of
degradate observations makes sense because SP7 represents both
soil hydraulic and pesticide processes. Additionally, association of
nitrate with soil hydraulic processes (SP3 and SP7) corroborates
the conservative transport of nitrate at these sites, which was
noted above. SP8, representing soil hydraulic and macropore
processes, was most informed by metolachlor observations, two
of which were from the 7.0 m lysimeter. Macropores in RZWQM
were parameterized so as to penetrate the entire soil profile, so it
is reasonable that deep pesticide concentrations would be highly
active on SP8. Also, rapid onset of observed metolachlor at 7.0 m
in May 2004 is evident in Fig. 2.

At MD, SP1 – representing soil hydraulic processes – was most
informed by soil water tension at 0.4 m and soil moisture observa-
tions at 0.8–1.4 m (Table 4). When soil hydraulic data were avail-
able, as at MD, they dominated soilhyd superparameters. Meto-
lachlor appears in the top ten only for SP3 (representing soil
hydraulic and macropore processes) and SP5 (soil hydraulic and
pesticide properties). Although ESA and OXA observations do not
appear in the top ten of any of the SPs at MD, their formation is tied
to the disappearance of metolachlor in RZWQM via metolachlor
half-lives and degradate formation percentages.

3.3.3 Parameter contributions to changes in prediction uncertainty
The PI statistics indicated which parameters substantially
contributed to the prediction uncertainty of maximum pesti-
cide/degradate concentration before and after calibration to the
data. Precalibration prediction uncertainty was reduced by up
to 46% (corresponding to wfc2) (see Fig. 6) at NE when perfect
knowledge of parameters was assumed, and by up to 23% at MD
(corresponding to wfc3) (Fig. 7). At both sites, the observed data
caused the parameter contributions to postcalibration prediction
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Figure 6. Contributions of parameters to pre- and postcalibration pre-
diction uncertainties of maximum metolachlor concentration in Nebraska
(0.007 mg L−1 at 152 cm on 29 May 2004). Parameters are defined in Table 3.

uncertainty to be small, which is seen by comparing the pre- and
postcalibration PI values at NE and MD (Figs 6 and 7 respectively).
The smaller the posterior uncertainty, the closer the PI values are
to zero. If posterior uncertainty were zero, then assuming perfect
knowledge of a parameter would result in PI= 0 because the
prediction uncertainty cannot be further reduced. Therefore, the
following discussion emphasizes relative differences among the
parameter contributions in a postcalibration context. Improved
characterization of parameters with higher postcalibration PI
values would be required further to reduce model misfit and pre-
diction uncertainty beyond that which has already been achieved.

Pesticide parameters generally were more important than soil
hydraulic and macropore parameters after calibration to the
observed data. Half-life parameters had the highest postcalibra-
tion PI values at both sites. At NE, soil subsurface aerobic half-life
of metolachlor (tsba) was the dominant parameter (black bars in
Fig. 6), and at MD the dominant parameter was soil subsurface aer-
obic half-life of ESA (td1a), followed by soil surface biotic half-life of
metolachlor (tsb) (Fig. 7). Along with sorption parameters, degra-
dation parameters have been observed as sensitive in previous
models of unsaturated zone pesticide fate and transport.35,36
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Figure 7. Contributions of parameters to pre- and postcalibration predic-
tion uncertainties of maximum metolachlor ethane sulfonic acid concen-
tration in Maryland (0.0041 mg L−1 at 52 cm on 12 January 2003). Parame-
ters are defined in Table 3.

The lsf parameter (sorptivity factor control for lateral infiltra-
tion) was the third most important postcalibration parameter for
prediction of maximum metolachlor concentration at NE (Fig. 6).
This parameter controls the degree to which macropore flow
is absorbed by the soil matrix via Green–Ampt radial (lateral)
infiltration.2 Compaction or lining of macropore walls may reduce
movement of water and chemicals into the surrounding soil. In
combination with tsba, these parameters suggested that transport
of a less persistent pesticide to depth is enhanced when macrop-
ore flow is not diverted laterally into the soil matrix. The calibrated
lsf value at NE was comparatively low (0.002 cm compared with
0.048 cm at MD), and the tsba of metolachlor was 7.6 days.

At NE, est (effective soil thickness) and nmac (number of macro-
pores per unit area) were more important among the remain-
ing macropore parameters. Although such parameters are sel-
dom measured in the field, improved characterization would fur-
ther reduce prediction uncertainty. Malone et al.18 measured nmac
using tension infiltrometer data in Iowa, which resulted in accu-
rate RZWQM predictions of herbicide concentrations in perco-
late. Their measured values ranged from 0.001 to 0.046 cm−2 at
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15–35 cm depth, which brackets the present model calibrated val-
ues (nmac= 0.03 cm−2 at both NE and MD).

Among macropore parameters at MD, est and lsf were more
important than nmac and rad (average macropore radius) in a
postcalibration context. However, the PI value of lsf at NE was
25 times greater than that at MD, suggesting that macropore
processes were less influential overall at MD. Therefore, NE
would most benefit from modeling resources aimed at improv-
ing characterization of such parameters, and calibration results
suggested that macropores were more active at NE than MD. The
calibrated active macroporosity (pmac) was about twice as high
at NE (2.1× 10−4) than at MD (1.1× 10−4). This is consistent with a
previous study that reported focused recharge of water in topo-
graphically low-lying areas near the NE site.14 In contrast, high
vertical nitrate fluxes at MD were attributed more to the high sand
content of the soils.34

In general, calibrated macropore parameters obtained here
were consistent with flow through former plant root channels
rather than large openings typical of structured clay soils. Based
on calibrated rad values (Table 3), the average macropore diam-
eter was 0.98 mm at MD and 1.26 mm at NE, which is within
the range reported for maize and alfalfa (0.4–4.5 mm) in a com-
prehensive review of studies on macropore flow.37 In one such
study, most macropores were <1 mm diameter and thought to
be channels resulting from decayed plant roots. Researchers
observed interconnected networks of macropores that resembled
living root systems and that penetrated to >1 m depth in loess
soils.

3.3.4 Observation data worth and changes in prediction
uncertainty
Calibration to the available data reduced the total precal-
ibration prediction uncertainty associated with maximum
pesticide/degradate concentrations by 98.0% at NE and 98.6%
at MD, based on PREDUNC1 results. Analysis of observation data
worth with PREDUNC5 indicated the comparative influence of
observation groups on prediction uncertainty. Values of data
worth at NE indicated that metolachlor, ESA and OXA data,
entered as groups one at a time, were comparable in reducing the
precalibration prediction uncertainty of maximum metolachlor
concentration (82–90 %) (see the gray bars in Fig. 8).

Similarly to the parameter contributions discussed above, the
observed data caused a large decrease in the effect of data groups
on prediction uncertainty, which is seen by comparing the pre-
and postcalibration percentage changes in Fig. 8. Removal of
data groups from the calibration dataset resulted in only small
increases in the postcalibration uncertainty values (the black
bars in Fig. 8), and the following emphasizes relative differences
among data groups. None of the data groups at NE contained
information so unique that their removal caused large changes
in postcalibration prediction uncertainty; however, to the extent
that differences were observed, metolachlor data saw the biggest
increase (3.5%), which is consistent with the precalibration result.
Increases incurred by removal of ESA and nitrate data were com-
parable (0.9 and 0.8% respectively). After metolachlor, it makes
sense that ESA data were important because metolachlor disap-
pearance and degradate formation are directly related in RZWQM,
as mentioned above. At NE, nitrate data may have had moderate
influence because it is conservatively transported with the soil
water, which is consistent with the activity of nitrate observations
on soil hydraulic SPs, noted above. Nitrate evidently functioned
as a surrogate for soil water content and soil water tension data in
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Figure 8. Data worth of observation groups to prediction of maximum
metolachlor concentration in Nebraska and maximum metolachlor ethane
sulfonic acid concentration in Maryland.

these well-drained soils when such data were not collected. This
result underscores the utility of the multi-objective optimization
approach, which simultaneously considered water and chemical
data. Prior researchers have noted that data diversity, includ-
ing unconventional data types, were important to convergence
of parameter estimates and also helped to resolve modeling
objectives with well-constrained parameters.38

At MD, moisture data caused the biggest decrease in precalibra-
tion uncertainty of maximum ESA concentration (96%), followed
by soil water tension (88%) and OXA data (80%) (gray bars in Fig. 8).
Surprisingly, ESA data reduced this uncertainty by only 59%. How-
ever, the amount of metolachlor transformed to OXA would affect
that which is transformed to ESA.

As at NE, changes in prediction uncertainty were smaller
after model calibration (black bars in Fig. 8). Removal of ESA
data caused the largest increase in postcalibration prediction
uncertainty (2.4%), followed by moisture data (2.0%). The results
suggested that collecting additional ESA data would have the
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largest impact on reducing model misfit and prediction uncer-
tainty beyond that attained so far. In contrast to NE, the increase
in prediction uncertainty from removal of nitrate data was neg-
ligible (<0.01%) (Fig. 8). At MD the nitrate observations likely
were redundant because soil hydraulic data were available,
so there would be little point in collecting additional nitrate
data.

3.3.5 Prediction intervals for water flux
Postcalibration prediction intervals of deep seepage were com-
pared with independent estimates of groundwater recharge by
the water table fluctuation method or the chloride mass bal-
ance method34 to evaluate the water flux component of the
models. At NE, the 95% prediction interval for deep seepage
(3.9–20.9 cm year−1) encompassed the independent recharge
estimate (16 cm year−1), which reflects irrigation. The irrigation
estimate in Table 1 was obtained by water balance calculations.34

At MD, the range of recharge estimates (31.5–43.4 cm year−1) did
not overlap with the 95% prediction interval of deep seepage
(61.3–64.4 cm year−1). This discrepancy suggests overestimation
of deep seepage by RZWQM; however, here macropore flow was
simulated at a single location in a field. The independent recharge
estimates integrated water fluxes over a larger area, which may
have dampened preferential flow effects at any one location.

4 CONCLUSIONS
The following conclusions were drawn from this research:

1 Calibration of complex agricultural system models is essen-
tial, but collection of unsaturated zone data is time consum-
ing and expensive. Study results indicated which data obser-
vations most benefitted the modeling. Although the observed
data were comparatively sparse, they substantially reduced
the prediction uncertainty associated with maximum pesti-
cide/degradate concentrations in unsampled portions of break-
through curves.

2 Nitrate functioned as a conservative unsaturated zone tracer
and evidently was a surrogate for soil hydraulic data at NE.
Nitrate observations at NE tended to dominate superparam-
eters that reflected soil hydraulic processes. Even though soil
hydraulic data were not available for model calibration at NE,
the independently measured recharge estimate (16 cm year−1)
was well within the 95% prediction interval for deep seepage
(3.9–20.9 cm year−1).

3 In contrast, nitrate data were somewhat redundant to predict-
ing maximum ESA concentration when soil hydraulic data were
collected, as at MD. Soil moisture and soil water tension dom-
inated superparameters at this site. Whereas moisture data at
MD caused the largest decrease in precalibration prediction
uncertainty, nitrate data caused the fourth-largest decrease.

4 Soil hydraulic parameters were more sensitive and better
informed by the observed data at both sites, and pesticide
and macropore properties were more important to prediction
uncertainty that remained after model calibration. Better char-
acterization of the latter parameters would be required further
to reduce model misfit and prediction uncertainty.

5 Macropore parameters tended to be more important at NE
than at MD, which was seen by comparing parameter contribu-
tions to postcalibration prediction uncertainty at the two sites.
Calibrated macropore parameters at both sites generally were

consistent with flow through former plant root channels rather
than large openings.
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